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WINTER SPORTS
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FIEANZ AT INEGE BN 72 & 5

all these games exist because of slipperiness of snow and ice



SNOW AND ICE FRICTION 7

ultra-low friction coefficient

solid-on-solid friction

Leonard de Vinci

... but for ice and snow
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ORIGIN OF LOW ICE/SNOW FRICTION 7

« skiing/sliding on a liquid film leads to low friction »



ON THE SPORT SIDE

can scientists be of any help to competitors ?

Martin Fourcade, Biathlon

S A

project in collab with Martin Fourcade and Gregory Deschamp (FFS Biathlon)



NEED FOR MORE SCIENCE

what do we know about snow and ice friction ?

« skiing on a liquid film leads to low friction »

« wax (a hydrophobic material) helps sliding »



SLIPPERY ICE: PREEXISTING LIQUID FILM

surface melting: back to Faraday and Thomson debates (1850-...)
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surface premelting of ice: slippy (but adhesive)



ICE FRICTION AND SURFACE WATER FILM

Two competing views
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« WATER SKIING » ?

some theory, very few experiments...

how to investigate the properties of the
interfacial liquid film ?



THE SNOW-ICE PROJECT
with C. Clanet (LadHyX)

propose a multi scale perspective to disentangle
phenomena at stake




A SKI RESORT (LadHyX)
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SKI/ICE FRICTION AT LARGE SCALE:
I\/IACRO EXPERII\/IENTS
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MORE INTO MICROSCOPIC n
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macroscopic experiments on snow and ice are interesting
but do not provide much information on the intimate

mechanisms

we miss information about the film, how to probe it ?

dig further downscale,
an experimental challenge at small scales ...



A NEW ATOMIC FORCE MICROSCOPE

« hearing forces »

- frequency shift tells about the elasticity of the probed material
- attenuation (quality factor) tells about the dissipation: friction & rheology



A NEW ATOMIC FORCE MICROSCOPE

with exceptional performance...
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Scan of a calibration grating + mica (patented)

100 nm

 Nanometric resolution
e Versatility
 Easy application in liquids




A NEW ATOMIC FORCE MICROSCOPE
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to probe friction on ice (-15°C-0°C)



TWO MAIN FOCUS

(1) the friction force
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(depending on velocity, temperature ...)



DETAILED FRICTIONAL BEHAVIOUR
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NOW, INVESTIGATE THE FILM

(2) thickness and properties of the interstitial liquid

a « stroke-probe » approach with the AFM
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= extract film thickness from measured dissipation



FILM THICKNESS

so thin !
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Mean thickness increases as intuitively expected with temperature!

Range in the hundreds of nanometers, below what was usually
believed/predicted (rather microns and more)



WATER BUT HIGHLY COMPLEX

probe the interfacial rheology (how it flows)
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ALTOGETHER, A NEW PERSPECTIVE

- highly viscous & visco-elastic water
= becomes a very good lubricant
- rather suggests a mixture of water and ice debris
(partial melting)

ice debris surrounded
by water, not full melting

complex rheology of a suspension



NEW TOOLS, NEW INSIGHTS

a multi scale approach is efficient:

* jceis an incredibly complex material as a lubricant

° new materials to improve wax effects

e consequences/advices for sports: revisit strategies,
materials, how to promote/suppress melting,
fluidisation of the water debiris, etc.



BACK TO OUR CHAMPION

Pyeong Chang: he won ! (three times)




THANKS TO THE SKI TEAM

at ENS: Luca Canale (PhD), Jean Comtet (PhD)
& Alessandro Siria, Antoine Nigues

at LadHyX: C. Cohen & C. Clanet

also Martin Fourcade and Gregory Deschamp (FFS Biathlon)

Canale et al., Phys. Rev. X (2019)



